Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Appl Physiol (1985) ; 133(6): 1295-1299, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2088959

ABSTRACT

Throughout the COVID-19 pandemic, a portion of those affected have evolved toward acute hypoxic respiratory failure. Initially, this was hypothesized to result from acute lung injury leading to acute respiratory distress syndrome (ARDS). In previous research, a novel quantitative CT post-processing technique was described to quantify the volume of blood contained within pulmonary blood vessels of a given size. We hypothesized that patients with lower BV5 blood flow would have higher supplemental oxygen needs and less favorable arterial blood gas profiles. From the initial data analysis, 111 hospitalized COVID-19 patients were retrospectively selected based on the availability of CT scans of the lungs with a slice thickness of 1.5 mm or less, as well as PCR-confirmed SARS-CoV2 infection. Three-dimensional (3-D) reconstructions of the lungs and pulmonary vasculature were created. Further analysis was performed on 50 patients. Patients were divided into groups based on their need for oxygen at the time of CT scan acquisition. Eighteen out of 50 patients needed >2 L/min supplemental oxygen and this group demonstrated a significantly lower median percentage of total blood flow in the BV5 vessels compared with the 32 patients who needed <2 L/min supplemental oxygen (41.61% vs. 46.89%, P = 0.023). Both groups had significantly less blood as a proportion in BV5 vessels compared with healthy volunteers. These data are consistent with the hypothesis that reduced blood volume within small (BV5) pulmonary vessels is associated with higher needs for supplemental oxygen and more severe gas exchange anomalies in COVID-19 infections.NEW & NOTEWORTHY This research provides, by using new imaging analysis on CT imaging, an insight into the pathophysiology of patients with COVID-19 infection. By visualizing and quantifying the blood in small vessels in the lung, we can link these results to the clinical need for oxygen in patients with COVID-19 infection.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Pandemics , SARS-CoV-2 , RNA, Viral , Retrospective Studies , Lung/diagnostic imaging , Respiratory Distress Syndrome/therapy , Tomography, X-Ray Computed/methods , Oxygen , Blood Volume
2.
PLoS One ; 16(10): e0257892, 2021.
Article in English | MEDLINE | ID: covidwho-1526682

ABSTRACT

BACKGROUND: Coronavirus Disease 2019 (COVID-19) is a respiratory viral illness causing pneumonia and systemic disease. Abnormalities in pulmonary function tests (PFT) after COVID-19 infection have been described. The determinants of these abnormalities are unclear. We hypothesized that inflammatory biomarkers and CT scan parameters at the time of infection would be associated with abnormal gas transfer at short term follow-up. METHODS: We retrospectively studied subjects who were hospitalized for COVID-19 pneumonia and discharged. Serum inflammatory biomarkers, CT scan and clinical characteristics were assessed. CT images were evaluated by Functional Respiratory Imaging with automated tissue segmentation algorithms of the lungs and pulmonary vasculature. Volumes of the pulmonary vessels that were ≤5mm (BV5), 5-10mm (BV5_10), and ≥10mm (BV10) in cross sectional area were analyzed. Also the amount of opacification on CT (ground glass opacities). PFT were performed 2-3 months after discharge. The diffusion capacity of carbon monoxide (DLCO) was obtained. We divided subjects into those with a DLCO <80% predicted (Low DLCO) and those with a DLCO ≥80% predicted (Normal DLCO). RESULTS: 38 subjects were included in our cohort. 31 out of 38 (81.6%) subjects had a DLCO<80% predicted. The groups were similar in terms of demographics, body mass index, comorbidities, and smoking status. Hemoglobin, inflammatory biomarkers, spirometry and lung volumes were similar between groups. CT opacification and BV5 were not different between groups, but both Low and Normal DLCO groups had lower BV5 measures compared to healthy controls. BV5_10 and BV10 measures were higher in the Low DLCO group compared to the normal DLCO group. Both BV5_10 and BV10 in the Low DLCO group were greater compared to healthy controls. BV5_10 was independently associated with DLCO<80% in multivariable logistic regression (OR 1.29, 95% CI 1.01, 1.64). BV10 negatively correlated with DLCO% predicted (r = -0.343, p = 0.035). CONCLUSIONS: Abnormalities in pulmonary vascular volumes at the time of hospitalization are independently associated with a low DLCO at follow-up. There was no relationship between inflammatory biomarkers during hospitalization and DLCO. Pulmonary vascular abnormalities during hospitalization for COVID-19 may serve as a biomarker for abnormal gas transfer after COVID-19 pneumonia.


Subject(s)
COVID-19/diagnostic imaging , Lung/blood supply , Lung/diagnostic imaging , SARS-CoV-2/metabolism , Tomography, X-Ray Computed , Adult , Aged , Biomarkers/metabolism , COVID-19/metabolism , COVID-19/therapy , Female , Follow-Up Studies , Hospitalization , Humans , Lung/metabolism , Lung/virology , Male , Middle Aged , Retrospective Studies
3.
Eur Respir J ; 58(3)2021 09.
Article in English | MEDLINE | ID: covidwho-1105689

ABSTRACT

INTRODUCTION: Evidence suggests that vascular inflammation and thrombosis may be important drivers of poor clinical outcomes in patients with COVID-19. We hypothesised that a significant decrease in the percentage of blood volume in vessels with a cross-sectional area between 1.25 and 5 mm2 relative to the total pulmonary blood volume (BV5%) on chest computed tomography (CT) in COVID-19 patients is predictive of adverse clinical outcomes. METHODS: We performed a retrospective analysis of chest CT scans from 10 hospitals across two US states in 313 COVID-19-positive and 195 COVID-19-negative patients seeking acute medical care. RESULTS: BV5% was predictive of outcomes in COVID-19 patients in a multivariate model, with a BV5% threshold below 25% associated with OR 5.58 for mortality, OR 3.20 for intubation and OR 2.54 for the composite of mortality or intubation. A model using age and BV5% had an area under the receiver operating characteristic curve of 0.85 to predict the composite of mortality or intubation in COVID-19 patients. BV5% was not predictive of clinical outcomes in patients without COVID-19. CONCLUSIONS: The data suggest BV5% as a novel biomarker for predicting adverse outcomes in patients with COVID-19 seeking acute medical care.


Subject(s)
COVID-19 , Biomarkers , Blood Volume , Humans , Retrospective Studies , SARS-CoV-2
4.
Thorax ; 76(2): 182-184, 2021 02.
Article in English | MEDLINE | ID: covidwho-733132

ABSTRACT

An increasing observation is that some patients with COVID-19 have normal lung compliance but significant hypoxaemia different from typical acute respiratory distress syndrome (ARDS). We hypothesised that changes in pulmonary blood distribution may be partially responsible and used functional respiratory imaging on CT scans to calculate pulmonary blood volume. We found that patients with COVID-19 had significantly reduced blood volume in the smaller calibre blood vessels (here defined as <5 mm2 cross-sectional area) compared with matched ARDS patients and healthy controls. This suggests that using high levels of PEEP may not alone be enough to oxygenate these patients and that additional management strategies may be needed.


Subject(s)
COVID-19/physiopathology , Lung Compliance/physiology , Lung/physiopathology , Pulmonary Circulation/physiology , Respiratory Mechanics/physiology , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Pandemics , Respiratory Function Tests , Retrospective Studies , Tomography, X-Ray Computed
5.
Acad Radiol ; 27(10): 1449-1455, 2020 10.
Article in English | MEDLINE | ID: covidwho-679392

ABSTRACT

RATIONALE AND OBJECTIVES: Mounting evidence supports the role of pulmonary hemodynamic alternations in the pathogenesis of COVID-19. Previous studies have demonstrated that changes in pulmonary blood volumes measured on computed tomography (CT) are associated with histopathological markers of pulmonary vascular pruning, suggesting that quantitative CT analysis may eventually be useful in the assessment pulmonary vascular dysfunction more broadly. MATERIALS AND METHODS: Building upon previous work, automated quantitative CT measures of small blood vessel volume and pulmonary vascular density were developed. Scans from 103 COVID-19 patients and 107 healthy volunteers were analyzed and their results compared, with comparisons made both on lobar and global levels. RESULTS: Compared to healthy volunteers, COVID-19 patients showed significant reduction in BV5 (pulmonary blood volume contained in blood vessels of <5 mm2) expressed as BV5/(total pulmonary blood volume; p < 0.0001), and significant increases in BV5-10 and BV 10 (pulmonary blood volumes contained in vessels between 5 and 10 mm2 and above 10 mm2, respectively, p < 0.0001). These changes were consistent across lobes. CONCLUSION: COVID-19 patients display striking anomalies in the distribution of blood volume within the pulmonary vascular tree, consistent with increased pulmonary vasculature resistance in the pulmonary vessels below the resolution of CT.


Subject(s)
Betacoronavirus , Coronavirus Infections , Lung , Pandemics , Pneumonia, Viral , COVID-19 , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL